Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(3): eabg6383, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35061540

ABSTRACT

Access to electron acceptors supports oxidized biomass synthesis and can be limiting for cancer cell proliferation, but how cancer cells overcome this limitation in tumors is incompletely understood. Nontransformed cells in tumors can help cancer cells overcome metabolic limitations, particularly in pancreatic cancer, where pancreatic stellate cells (PSCs) promote cancer cell proliferation and tumor growth. However, whether PSCs affect the redox state of cancer cells is not known. By taking advantage of the endogenous fluorescence properties of reduced nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide cofactors we use optical imaging to assess the redox state of pancreatic cancer cells and PSCs and find that direct interactions between PSCs and cancer cells promote a more oxidized state in cancer cells. This suggests that metabolic interaction between cancer cells and PSCs is a mechanism to overcome the redox limitations of cell proliferation in pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Pancreatic Stellate Cells , Cell Line, Tumor , Humans , Oxidation-Reduction , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/metabolism , Stromal Cells , Pancreatic Neoplasms
2.
Integr Biol (Camb) ; 12(10): 250-262, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33034643

ABSTRACT

The prostate tumor microenvironment (TME) is strongly immunosuppressive; it is largely driven by alteration in cell phenotypes (i.e. tumor-associated macrophages and exhausted cytotoxic T cells) that result in pro-tumorigenic conditions and tumor growth. A greater understanding into how these altered immune cell phenotypes are developed and could potentially be reversed would provide important insights into improved treatment efficacy for prostate cancer. Here, we report a microfluidic model of the prostate TME that mimics prostate ducts across various stages of prostate cancer progression, with associated stroma and immune cells. Using this platform, we exposed immune cells to a benign prostate TME or a metastatic prostate TME and investigated their metabolism, gene and cytokine expression. Immune cells exposed to the metastatic TME showed metabolic differences with a higher redox ratio indicating a switch to a more glycolytic metabolic profile. These cells also increased expression of pro-tumor response cytokines that have been shown to increase cell migration and angiogenesis such as Interleukin-1 (IL-1) a and Granulocyte-macrophage colony-stimulating factor (GM-CSF). Lastly, we observed decreased TLR, STAT signaling and TRAIL expression, suggesting that phenotypes derived from exposure to the metastatic TME could have an impaired anti-tumor response. This platform could provide a valuable tool for studying immune cell phenotypes in in vitro tumor microenvironments.


Subject(s)
Immune System , Prostatic Neoplasms/immunology , Prostatic Neoplasms/physiopathology , Tumor Microenvironment , Cell Movement , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Fibroblasts/metabolism , Glycolysis , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunosuppression Therapy , In Vitro Techniques , Leukocytes, Mononuclear/metabolism , Male , Microfluidics , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Neovascularization, Pathologic , Organ Culture Techniques , Oxidation-Reduction , Phenotype , Prostate/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...